

## Changing the Landscape of FM Broadcast Pattern Studies and Combiners

PRESENTED BY DAVE BENCO

SEPTEMBER 28, 2023

#### TODAY'S PRESENTATION

- Use of AI Optimization to develop FM Directional Patterns
  - Recent FCC Rule change and timeline
  - History of the technology used to develop patterns
  - Field verification with Drone measurement
- Reconfigurable Manifold Combiner
  - Accommodate future expansion
  - Reduced loss/increased power handling
  - Leverage computer design tools



## BRINGING FM INTO MODERN TIMES









#### RANGES



RCA / Dielectric Gibbsboro NJ Antenna Engineering Center

Trusted for Decades. Ready for Tomorrow.



Harris / Dielectric Far Field Range – Palmyra MI





4

#### RANGES

Dielectric – Raymond, ME



60' Tapered anechoic chamber





Outdoor 100' cylindrical near field range – Largest in the US.





Indoor cylindrical near field model range

5

#### **OLD SCHOOL STUDIES**

- Need to build a model
  - Find (or build) a similar Tower section to verify performance





#### OLD SCHOOL STUDIES

• Tune Bay

Lots of Metal Tape

• Add Small metal rods and tie wrap them in place.







# FCC RULE CHANGE TIMELINE AND UPDATE

- June 2021 Filed a PRM with the FCC to allow the use of computer simulation to verify performance of directional FM antennas
- November 2021 Unanimous decision by the FCC to move forward with the NPRM
- FCC strong support Public comment period reduced to only 30 days
- Public comments tally
  - 18 in favor 1 opposed
  - Strong support from the broadcast community
- May 2022 FCC adopted the rule change

Ruling states : "To verify a particular antenna model for simulation, the broadcast station must submit to the Commission both the results of the computer modelling and the measurements of either a full-size or scale model of the antenna demonstrating a reasonable correlation"

## **DIELECTRIC VERIFICATION UPDATE**

- Defined verification report template submitted first in Dec 2022 (WLPR)
- Reasonable correlation?
  - Figure of merit correlation coefficient
    - Statistical measure of the relationship between two data sets
    - Correlation of 1 shows perfect match



$$r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}}$$







HPOL – Blue VPOL – Red FCC Protect – Green Composite - Brown



Progression

- AIO Example
  - C- Bay on a 6 ½' tower
- 320 Iterations
  - Final meets all objectives nice pattern congruency, composite fills 89%
- First 100 iterations patterns very erratic
  - Geometry variables spread out
  - "Bees looking for a direction"
- Last 50 iteration small pattern changes
  - Geometry variable beginning to cluster
  - "Bees now swarming"
- AIO completed in only 21 hrs.

HPOL – Blue VPOL – Red FCC Protect – Green Composite - Brown

- AIO Example
  - C- Bay on a 6 ½' tower
- 320 Iterations
  - Final meets all objectives nice pattern congruency, composite fills 89%
- First 100 iterations patterns very erratic
  - Geometry variables spread out
  - "Bees looking for a direction"
- Last 50 iteration small pattern changes
  - Geometry variable beginning to cluster
  - "Bees now swarming"
- AIO completed in only 21 hrs.



START

HPOL – Blue VPOL – Red FCC Protect – Green Composite - Brown

- AIO Example
  - C- Bay on a 6 <sup>1</sup>/<sub>2</sub>' tower
- 320 Iterations
  - Final meets all objectives nice pattern congruency, composite fills 89%
- First 100 iterations patterns very erratic
  - Geometry variables spread out
  - "Bees looking for a direction"
- Last 50 iteration small pattern changes
  - Geometry variable beginning to cluster
  - "Bees now swarming"
- AIO completed in only 21 hrs.



FINAL

HPOL – Blue VPOL – Red FCC Protect – Green Composite - Brown

- AIO Example
  - C- Bay on a 6 <sup>1</sup>/<sub>2</sub>' tower
- 320 Iterations
  - Final meets all objectives nice pattern congruency, composite fills 89%
- First 100 iterations patterns very erratic
  - Geometry variables spread out
  - "Bees looking for a direction"
- Last 50 iteration small pattern changes
  - Geometry variable beginning to cluster
  - "Bees now swarming"
- AIO completed in only 21 hrs.



HPOL – Blue VPOL – Red FCC Protect – Green Composite - Brown

- AIO Example
  - C- Bay on a 6 ½' tower
- 320 Iterations
  - Final meets all objectives nice pattern congruency, composite fills 89%
- First 100 iterations patterns very erratic
  - Geometry variables spread out
  - "Bees looking for a direction"
- Last 50 iteration small pattern changes
  - Geometry variable beginning to cluster
  - "Bees now swarming"
- AIO completed in only 21 hrs.



## GEOMETRY VARIABLES VS OBJECTIVE

HPOL – Blue VPOL – Red FCC Protect – Green Composite - Brown



Progression

- AIO Example
  - C- Bay on a 6 ½' tower
- 320 Iterations
  - Final meets all objectives nice pattern congruency, composite fills 89%
- First 100 iterations patterns very erratic
  - Geometry variables spread out
  - "Bees looking for a direction"
- Last 50 iteration small pattern changes
  - Geometry variable beginning to cluster
  - "Bees now swarming"
- AIO completed in only 21 hrs.

#### HOW DO WE FURTHER APPLY THIS APPROACH?

- HFSS Modeling
  - Design 100 of new products at Dielectric
    - Eliminates Proto-types
    - Saves time
    - Saves cost
  - Designed patterns for TV Antennas
    - Validated with 100's of older models made
    - Drone Studies later in time

Trusted for Decades. Ready for Tomorrow.



18

#### VHF AND UHF REPACK ANTENNAS DESIGNED BY HFSS SIMULATION AND VERIFIED BY FIELD DRONE MEASUREMENTS

#### TFU-30DSC/VP-R 3BP260

\*Side Mount Antenna. Tower info in aperture available to Dielectric was limited, so discrepancies are expected but the drone measurement shows the overall pattern is intact.

#### **APPENDIX**

#### Example of drone measurements vs. HFSS calculations









#### TLP-8M/VP

\*Side Mount Antenna. Tower info in aperture available to Dielectric was limited, so discrepancies are expected but the drone measurement shows the overall pattern is intact.

0

#### APPENDIX

### Example of drone measurements vs. HFSS calculations





#### APPENDIX

### Example of drone measurements vs. HFSS calculations







#### APPENDIX

## Example of drone measurements vs. HFSS calculations





#### MODERNIZE WITH USE OF SIMULATION SOFTWARE



- Range (4.4:1 scale model range)
  - 4 hr. Setup time
  - Pattern/adjustments 20 min
  - 1 Week range time
  - Total lead time = 5 days
  - 120 Iterations
  - Man hours = 40
- AIO
  - 1 hr. Setup time
  - 20-30 hr. Cycle time
  - 300-400 Iterations
  - Total lead time = 2 days
  - Man hours =1



#### MODERNIZE WITH USE OF SIMULATION SOFTWARE

- Simulation has many benefits over traditional range measurements
  - Cost advantage, reflection free environment, mechanical tolerancing, human error, complete optimization, time constraints, standardization, quality, reproducibility.....

![](_page_23_Picture_3.jpeg)

![](_page_23_Picture_5.jpeg)

#### **RECONFIGURABLE MANIFOLD**

- What is a reconfigurable manifold combiner?
- New technology incorporates existing manifold combiner with new features
- Mechanical advantages reduced size and higher reliability
- Walk through 7-channel design
- Electrical advantages single filter per channel and expandable design
- Market analysis and real-world example

![](_page_24_Picture_7.jpeg)

#### **MECHANICAL ADVANTAGES**

- What is a reconfigurable manifold combiner?
- Unique package that utilizes manifold spline
- Unused ports optimized for future expansion
- Analysis used to compute output spline line lengths
- Inputs/Outputs kept in the same location
- Smaller footprint and increased peak power rating over comparable designs

Patent Pending

#### **MECHANICAL ADVANTAGES**

#### **Footprint & Reliability**

- Streamlined design footprint half the size of equivalent CIF
- Failure rate:
- n: number of parts categories
- Ni: quantity of the ith part
- $\lambda$ i: failure rate of the ith part
- $\pi Qi$ : quality factor of the ith part
- Reliability directly proportional to parts count
- Manifold has 60% fewer components than equivalent CIF
- Simplicity = Reliability!

![](_page_26_Figure_12.jpeg)

#### **MECHANICAL ADVANTAGES**

- Adjustability & Stability
- Inputs/output remain stationary, no need to re-route TL
- U-links easily removed for phase modifications to the spline
- Each channel requires only one filter module
- Eliminates reject or ballast loads for combined system output
- Footprint of manifold combiner remains the same even with future channel addition

![](_page_27_Figure_7.jpeg)

#### 7 CHANNEL DESIGN

- Ports for Future Channels
- 7-channel manifold combiner
- 5 channels defined (black)
- 2 open ports for future channel expansion (red)
- Potential frequencies that could be added:
  - Slot 2: 102.9-103.5 MHz, 106.3 or 107.9 MHz
  - Slot 6: 94.9-96.3 MHz and 93.3 MHz

![](_page_28_Figure_8.jpeg)

#### 7 CHANNEL DESIGN

#### • Spare Filters

- All 7 filters incorporated in manufacturing and test
- Frequency matrix confirmed using HFSS based on known and anticipated channels
- Combiner installed with 5 known channel filters in place
- 2 shorts as placeholders for future channels
- 2 spare filters on site for future channels
- When a new channel is added combiner can be retuned in less than 4 hours, faster than adding a new CIF module into a CIF combiner
- Spare filters can also be swapped for a filter in the combiner that requires maintenance

![](_page_29_Figure_9.jpeg)

### 7-Channel Design

- Electrical Shorts for Unused Ports
- 2 unused ports are capped with electrical shorts
- For known future channel the short is equivalent to the electrical short of the filter for that channel
- Output spline is determined in original design and does not need to change
- For unknown future channels analysis is completed in HFSS for new output spline

![](_page_30_Figure_6.jpeg)

#### 7 CHANNEL DESIGN

#### • Defining the Spline in HFSS

• HFSS determines S-parameters for each tuned filter and elbows/tees in the output spline

![](_page_31_Figure_3.jpeg)

![](_page_32_Figure_0.jpeg)

Trusted for Decades. Ready for Tomorrow.

### • Defining the Spline in HFSS

• S-parameter data entered into circuit simulator, line lengths are calculated for each configuration

![](_page_32_Figure_4.jpeg)

Patent Pending

#### 7 CHANNEL DESIGN

#### • Defining the Spline in HFSS

• When a new channel or channels are added some or all of the u-links in the output spline change

![](_page_33_Figure_3.jpeg)

#### **ELECTRICAL ADVANTAGES**

- All positions are equal
- Similar loss, VSWR, and group delay
- Each station tuned to <1.06:1 regardless of position
- Voltage limited by filters, mitigated by proper

### I/O sizing

| Manifold Combiner |           |          |        |  |
|-------------------|-----------|----------|--------|--|
| Station           | Freq, MHz | Loss, dB | Eff, % |  |
| 1                 | 104.5     | 0.43     | 0.91   |  |
| 2                 | 2 TBD     |          |        |  |
| 3                 | 3 100.7   |          | 0.91   |  |
| 4                 | 4 99.1    |          | 0.91   |  |
| 5                 | 5 97.3    |          | 0.91   |  |
| 6                 | 6 TBD     |          |        |  |
| 7                 | 7 91.1    |          | 0.92   |  |

- CIF Combiner
- CIF will have increased loss farther from antenna
- Station at ballast load has degradation over others
- Increased VSWR as you approach load side
- Hybrids are the weakest voltage link

| CIF Combiner |           |          |        |  |  |
|--------------|-----------|----------|--------|--|--|
| Station      | Freq, MHz | Loss, dB | Eff, % |  |  |
| 1            | 104.5     | 0.5      | 0.89   |  |  |
| 2            | 100.7     | 0.55     | 0.88   |  |  |
| 3            | 99.1      | 0.61     | 0.87   |  |  |
| 4            | 97.3      | 0.67     | 0.86   |  |  |
| 5            | 91.1      | 0.71     | 0.85   |  |  |
| 6            | TBD       | 444888   | 760    |  |  |
| 7            | TBD       |          |        |  |  |

## • Potential Market Size

- 100 stations on the FM spectrum with many combinations available for each market
- Even with streamlined analysis number of possibilities are daunting
- To determine the maximum number of stations in any market:  $\frac{F(t)}{F(e)}$
- F(t): total number of stations available (100)
- F(e): number of stations eliminated when one is selected due to 800 kHz spacing (4)
- For any market, maximum number of stations is 25

Patent Pending

- Boston
- 21 potential stations
- Eliminating LP and directional patterns left with
- Assume 5 of 9 stations join a shared antenna system
- 7-channel manifold combiner could be utilized with 2 open ports for future expansion

| Status | Calls    | Freq  | Power | City   | State |
|--------|----------|-------|-------|--------|-------|
| LIC    | WERS(FM) | 88.9  | 4     | Boston | MA    |
| LIC    | WGBH(FM) | 89.7  | 100   | Boston | MA    |
| LIC    | WJMN(FM) | 94.5  | 9.2   | Boston | MA    |
| LIC    | WBQT(FM) | 96.9  | 22.5  | Boston | MA    |
| LIC    | WBZ-FM   | 98.5  | 9     | Boston | MA    |
| LIC    | WZLX(FM) | 100.7 | 21.5  | Boston | MA    |
| LIC    | WBGB(FM) | 103.3 | 8.7   | Boston | MA    |
| LIC    | WWBX(FM) | 104.1 | 21    | Boston | MA    |
| LIC    | WMJX(FM) | 106.7 | 21.5  | Boston | MA    |

Patent Pending

#### • Boston - Continued

- 5 known stations, leaves 2 of the remaining 4 stations able to join the system
- Ideally, each solution for the output spline would be calculated in HFSS
- To limit design time, need total possible combinations for Boston market

C(n,r) = n!/[r!\*(n-r)]

- n: number of stations not included in the manifold
- r: number of spare ports available on the manifold
- In this case there are 6 possible solutions for the Boston market, simplifying the analysis

Patent Pending

#### St. Louis

- 10 possible omni, high power stations
- Assume 4 of the 10 stations decide to join a shared antenna system
- Using a 7-channel combiner, 3 of the remaining 6 stations can join the system
- This leaves 20 possible output spline solutions to solve in HFSS

| Status | Calls    | Freq  | Power | City      | State |
|--------|----------|-------|-------|-----------|-------|
| LIC    | KDHX(FM) | 88.1  | 42    | St. Louis | МО    |
| LIC    | KWMU(FM) | 90.7  | 100   | St. Louis | MO    |
| LIC    | KSIV-FM  | 91.5  | 85    | St. Louis | MO    |
| LIC    | WIL-FM   | 92.3  | 100   | St. Louis | МО    |
| LIC    | KSD(FM)  | 93.7  | 74    | St. Louis | MO    |
| LIC    | WFUN-FM  | 96.3  | 92    | St. Louis | MO    |
| LIC    | KYKY(FM) | 98.1  | 90    | St. Louis | МО    |
| LIC    | KEZK-FM  | 102.5 | 100   | St. Louis | МО    |
| LIC    | KLOU(FM) | 103.3 | 90    | St. Louis | MO    |
| LIC    | KSLZ(FM) | 107.7 | 100   | St. Louis | MO    |

Patent Pending

#### CONCLUSION

- Historically CIF combiners have been used for channel expansion of multi-channel systems
- Manifold combiner is a viable alternative:
  - Smaller footprint
  - · Fewer parts, higher reliability
  - Equality in electrical performance across stations
- Advancement in simulation software allows for increased efficiency for all possible design scenarios
- Manifold provides a superior economical solution for future multi-station systems

![](_page_39_Figure_8.jpeg)

## THANKS FOR YOUR TIME! ANY QUESTIONS?

![](_page_40_Picture_1.jpeg)

![](_page_40_Figure_2.jpeg)